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The determination of the Kolmogoroff constants for 
velocity, temperature and humidity fluctuations from 

second- and third-order structure functions 
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Department of Oceanography, Oregon State University, Corvallis 

(Received 16 February 1971) 

Second- and third-order structure functions were computed from velocity, 
temperature and humidity fluctuations in the wind over the ocean. Universal 
inertial-convective subrange constants (Kolmogoroff constants) were computed 
from these structure functions. The constant for velocity is consistent with other 
recent observations. The temperature and humidity constants are found to be 
equal within the measurement error and have values of about 0.8. 

Introduction 
From measuremenks in the atmospheric boundary layer, second- and third- 

order structure functions were calculated to determine the Kolmogoroff constants 
for velocity, temperature and humidity fluctuations. R.V. .Flip (floating in- 
strument platform), which is operated by the Marine Physical Laboratory of 
Scripps Institution of Oceanography, was the platform for these measurements 
which were made during the BOMEX experiment in May 1969 and on a pre- 
BOMEX cruise off San Diego in February 1969. This programme was carried 
out in conjunction with the University of California San Diego, University of 
Washington, University of British Columbia and Oregon State University. 

The instrumentation and data collection methods are described in detail by 
Pond et al. (1971). Velocity measurements were from a Kaijo Denki ultrasonic 
anemometer (model PAT-31 l), humidity from a Lyman-Alpha humidiometer 
(Electromagnetic Research Corp.), and temperature (for BOMEX) from a, 
platinum resistance thermometer. The temperature data for the pre-BOMEX 
cruise was from a dry thermocouple operated by the University of Washington 
personnel (headed by Dr C. A. Paulson). The velocity and temperature sensors 
are virtually linear. The Lyman-Alpha humidometer is an exponential device 
but this behaviour is taken into account, in computing the humidity from the 
observed voltages so it is effectively linear too. 

Several factors have complicated the analysis of the velocity data. The in- 
strument arrays were not always oriented to the mean wind, Flip’s motion 
contributed energy to the velocity spectra a t  wave frequencies and its presence 
in the fluid field distorted the flow. A discussion of these effects and the co- 
ordinate rotations and corrections necessary to minimize them appears in Pond 
et al. (1971). These complications have a fairly small effect on structure functions; 
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the contributions to the structure functions are of higher frequency than the 
waves and small errors in the h a 1  orientation of the co-ordinate system ( 5” 
to 10” in the horizontal and 1’ to 2” in the vertical) have negligible effect as 
will be demonstrated later. 

Theoretical considerations 

property that 
A one-dimensional energy spectrum #a for a fluctuating quantity a has the 

- s,” $,dk = a2, (1) 

where k is the downstream component of the radian wave-number and the bar 
represents an average (over time in om case). Assuming the Kolmogoroff 
hypotheses are valid, #, in the inertial subrange has the form 

$5, = I-;,&%& (2) 

where u is the downstream component of velocity, K’ is an absolute constant 
(the one-dimensional Kolmogoroff constant for velocity fluctuations) and E is 
the kinetic energy dissipation per unit mass. Assuming Kolmogoroff type 
hypotheses for a scalar quantity, y ,  such as temperature T or humidity p 
(Obukhov 1949, Corrsin 1951), $5, in the inertial-convective subrange has the form 

where (3) 

Bi is an absolute constant (the one-dimensional Kolmogoroff constant for scalar 
fluctuations), N, is the total dissipation of &y2, and 7, is the diffusivity of 
the scalar, y .  

Pond, Stewart & Burling (1963) have shown that in the inertial subrange 

X(r) = -O.lOOK’-%, (4) 

where X(r)  is the skewness of the velocity differences defined as 

where u is the velocity in the downstream x direction and r is a space lag in 
the downstream direction. Equation (4) was obtained by showing that the 
structure functions Dll and D,, have the following form in the inertial subrange: 

As one might expect, it  is possible t o  find an analogous relation between a 
skewness based on scalar quantities and the scalar Kolmogoroff constant. For 
temperature and humidity fluctuations Monin & Yaglom (1967) have shown 
that in the inertial-convective subrange 

F,(r) = - @r-q,-? (7)  
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F,(r) is a skewness defined as 

where y refers to either temperature or humidity. Dry and D,,, have the form in 
this subrange: 

Dyy = 4 . 0 2 B ~ N Y e - ~ r ~ ;  

D,,, = -$Nynr. (9) I 
In  the inertial subrange, the second-order cross-stream and vertical velocity 

structure functions 

and 

where v and w refer respectively to cross-stream and vertical components of 
velocity fluctuations, should equal $Q,. The third-order structure functions 

and 

D,, = [v(x + r )  - v(z)I3 

Dmw = [w(x + r )  - w(x)I3 

will vanish in isotropic turbulence. 

AT, are converted to space separations using Taylor's hypothesis 
In  practice, variables are measured as a function of time; time separations, 

r = - UAT, (12) 

where U is the mean wind speed. Lin (1953) has shown that Taylor's hypothesis 
is valid in a shear flow provided that 6 U2 and that r < 21~2 ,  where x is the 
distance to the boundary. Both these conditions are satisfied for the data con- 
sidered. Pond et al. (1963) have shown that isotropy is possible only if r < z and 
thus X and Fy values are used to obtain K' and B; for r < z only. 

The effect of instrument orientation on the velocity structure functions 
As previously mentioned, the velocity-measuring instruments were not always 

oriented to the mean wind. The data were rotated mathematically to achieve 
proper orientation. The final rotated velocities are believed to be accurate in 
the horizontal, within 10" at worst, but probably less in the true downstream 
direction, with the vertical orientation more accurate. The possible effect of the 
misorientation for the worst case (10") is estimated below. 

Let primed quantities denote measured values, and unprimed quantities values 
in a properly oriented co-ordinate system. The measured second-order volocity 
structure function is then 

D;, = D,, cos2 6' + D,, sin2 0 + 2 0 ,  cos 6' sin 0, (13) 

where 6' is the angle between the measured and true co-ordinates. For 6' < lo", 
1 3 cos26' 2 0-97. The quantity D,, is approximately equal t o  D,, and sin2 10" 
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is 0-03 so that the second term on the right-hand side of the above expression 
contributes a small amount to DiZ, which in any case tends to compensate for 
the effect of the cos2 8 factor in the first term. The term Dlw can be written 

( 1 4 )  10 - B B - U B V A + ~ A V A - U A V B ,  

where the subscripts B and A refer to positions a distance r apart. Terms such 
as wB etc., are components of the double covariance tensor and all vanish in 
isotropic turbulence (Hinze 1959). Actual measurements of these covariances 
from spectral techniques indicate that they are small for the data considered and, 
since they are multiplied by 2 cos 8 sin 8 (0.34 for 8 = loo), they contribute small 
errors to Oil. The measured third-order structure function can be written 

Dil, = D,,, (3083 8 + D,,, sin3 6 + 3 4 ,  cos2 8 sin 8 + 3DZw cos 8 sin2 8. ( 1 5 )  

The term D,,, is 2 0.2DZz, and in addition is multiplied by sinS8 which is very 
small, so this term’s contribution is vanishingly small. The term Dzt, can be 
written 

D - X v - -  

-- 
DzZ, = u x -  2uB U A  V B  + u: V B  - u& v, + 2UB u~ V A  - (16 )  

where the terms on the right are all components of the triple covariance tensor 
and all vanish in isotropic turbulence. In addition this term is multiplied by 
3 cos20sin8 (0-51 for 8 = 10’) so contributions from D,, to Dizz should be small. 
The remaining term, DZv,, can be shown to be related to D,, by the following 
expression 

3DZWW = DZZl ( 1 7 )  

for isotropic turbulence. Since 3Dz,, is of order D,,, and is multiplied by cos 6 sin2 8, 
it contributes N 3 % or less to Dill and the contribution is such as to correct the 
effects of the c0s36 factor in the first term. Similar arguments can be made for 
a vertical misorientation and because it is much smaller than the horizontal one 
the effect is significantly less. We conclude that the structure functions are not 
very sensitive to small misorientations and that negligible errors are introduced 
if the co-ordinates of measurement are slightly misaligned with the mean wind. 

Data analysis 
The velocity, temperature and humidity signals were sampled at  a rate of 

about ten/second. The data were treated in blocks of 4096 samples and the 
structure functions Dlz, Duz, Dvv, D,,,, D-, Dm, DzTT, DTT, D,, and D ,  were 
computed for each block of data for various lags between about 0.5 and 10 metres. 
The second-order velocity structure functions were corrected for the averaging 
distance of the sonic anemometer by the method suggested by Stewart (1963) .  

( 1 8 )  
This correction is 

where c refers to the corrected structure function, L is the averaging distance for 
the instrument (taken as 20 cm) andr is the lag. The third-order velocity structure 
functions were not corrected for averaging distance since they do not depend 
strongly on the scale sizes for which this correction is significant (Stewart 1963). 

(Dzz)c = DZZP - P W d Q  - &(w)21> 



Determimtion of the Kolmogoroff constants 261 

Temperature and humidity structure functions were also uncorrected for this 
effect since for temperature the averaging distance is quite small and for humidity, 
it is not well-known, but is believed to be small. 

The structure functions for a block of 4096 data points were calculated at 
various lags according to (5) and (8). The second- and third-order structure 
functions for each block were then divided by r% and r respectively (r = - UnAt, 
n = 1,2 ,3 ,  ... and At is the interval between samples). Block values of these 
quantities for fixed n were averaged to produce the values for a run. Runs were 
from 2-14 blocks or 13-87 minutes in length. From these averaged quantities, 
skewnesses for each run were computed as a function of r. From (6) and (9)) it is 
apparent that this normalization of the structure functions by and T should 
produce quantities which are proportional to €3 in the case of second-order 
velocity structure functions and e in the case of third-order velocity structure 
functions; for temperature and humidity these quantities should be proportional 
to A??. Other methods of averaging are also possible; for example the skewness 
for each block as a function of r or the quantities D$/r instead of D l l / r ~  could be 
averaged over a run. These methods of averaging were carried out but are not 
reported here since they produce essentially the same results. 

In the region from two to five metres lag the skewnesses for a run were fairly 
constant. Below two metres lag instrumental effects were present and above 
five metres lag the assumption of an inertial-convective subrange becomes 
doubtful, because of the presence of the surface about eight metres away. 
Averages of the normalized structure functions over this two to five metre region 
were used to compute the final skewnesses and Kolmogoroff constants reported. 

Results 
As an indication of the degree of isotropy in the turbulence measured from 

Flip, the structure functions D,,, D,,, D,,, and Dmw were calculated and com- 
pared to the corresponding downstream values. Figure 1 is a plot of the ratios of 
D,, and D,, to D, and the ratios of D,, and Dm to Dill. For lags in the region 
of one to five metres, D,,/Dll is of order one and the ratio Dm/Dtl, although 
somewhat smaller, is not very different from one. This sort of deviation from 
isotropy has been noted before, e.g. by Weiler & Burling (1967). The ratios of 
Ow,, and D,,, to D,, are very scattered and typically of order k 0-1-0.2, or less. 
Thus from figure 1 we conclude that the departure from local isotropy is not very 
great and similar to that usually found in the atmospheric boundary layer. 

Figure 2 is a plot of D&r and - Dlll/r and the corresponding skewnesses for 
three representative runs. The interesting feature of this plot is that although 
the magnitudes of the structure functions vary considerably from run to run 
and from lag to lag the skewnesses are quite alike except at the short lags. The 
skewness values between two and five metres lag are almost constant for most 
runs and so averages over this range have been used to compute the Kolmogoroff 
constants. Figure 3 shows the results of the same runs for temperature and 
humidity structure functions. The structure functions for temperature decrease 
rapidly with r, except a t  short lags but the skewnesses are again nearly constant 
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in the region from two to five metres. Humidity structure functions and skew- 
nesses are quite well behaved except at short lags. 

Figure 4 shows composite plots of FT, Fq and S for all runs. With the exception 
of a few runs the skewnesses for velocity, temperature and humidity are almost 
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FIGURE 1. Ratios of cross-stream and vertical velocity structure 
functions to downstream velocity structure functions. 

constant for lags greater than two metres. Table 1 is a summary of the results of 
the computations. It should be noted that in the computation of B; a value for 
K is required. We have computed B; in two ways: one uses the value of K’ 
measured from that run; the other uses a value of K’ of 0.55. Both results are 
presented in table 1 although they do not differ significantly from each other. 
In table 1 average skewnesses are given, as well as averages for K’, B> and Bi. 
The K and Bi from the average skewnesses do not differ significantly from the 
average K’ and Bi. Except for 4a the runs 1-15 correspond to the OSU runs 1-15 
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in Pond et al. (1971). Run 4a is an additional short run not included in Pond 
et al. 

The average of our calculations over the 16 runs gives a value of 0.57 k 0.10 
for the Kolmogoroff constant K'. (All values are given as mean k standard 
deviation.) From the average skewness we get the value 0-54. For temperature 

200 I- 

-0.1 L A  1 

I 

0 2 4 6 8 10 

Lag in metres 

FIGURE 2. Downstream velocity structure functions and skewnesses as a function 
of lag. 0, run 1; 0, run 11; A, run 12. 

Lag in metres 

F I a m  3. Temperature and humidity structure functions and skewnesses a8 a 
function of lag. 0, run 1; 0, run 11; A, run 12. 
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fluctuations we obtain a value of Bh of 0.83 t 0.13 using the observed value of K' 
for individual runs and a value of 0.85 0.14 using K' = 0.55; from the average 
FT using K' = 0.55 we get 0.83. To our knowledge, only one previous estimate of 
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FIGURE 4. Skewnesses for all runs as a function of lag. 

the Kolmogoroff constant for humidity fluctuations has been reported (Miyake, 
Donelan & Mitsuta (1970) estimate 0.63 based on one aircraft run). For Bi we 
obtainavalueof 0.80 f 0.17usingmeasuredvaluesofK'andavalueof0.81~ 0.17 
using K' = 0.55; from the average FQ assuming K' = 0-55 we get 0.78. 

Discussion 
The skewness values calculated from Flip data show a considerable amount of 

scatter which seems to  be due primarily to the variations in the third-order 
structure functions. It was observed that the second-order structure functions 
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are quite stable and do not vary much within a run. The third-order quantities 
which are not positive debite,  on the other hand, show a great amount of 
variation and require long records to settle to a reliable average. 

All the results presented are based on the assumption of local isotropy. The 
scale sizes over which the structure functions were calculated are at  the large 
scale end of the approach to local isotropy and thus some doubt is cast on the 
reliability of the skewnesses reported. The skewnesses calculated for the short 
lags (less than two metres) are not reliable since the measuring instruments were 
not a t  the same point (the temperature, humidity andvelocity sensors were within 
a radius of about 50 cm). There are also instrument-response limitations which 
affect the short lags. 

Although the structure function method of determining these constants has 
more statistical scatter than determinations based on the whole spectrum and 
there are some limitations in the instruments, we have been able to make one of 
the first estimates of the Kolmogoroff constant for humidity fluctuations. In  
particular we can check whether the constant for humidity fluctuations is likely 
to be the same as that for temperature fluctuations. Although one might expect 
the same value, a check with actual measurements is more satisfying before 
using the constant (which we wished to do to test the dissipation method for 
estimating the moisture flux as reported in Pond et al. (197 1)). The values obtained 
for the velocity constant are regarded as a check that our results are reliable in 
spite of the problems noted. The value for the temperature constant serves as a 
check too, although there are not very many measurements and some dis- 
crepancies. So our results are useful in checking earlier results by an independent 
method. 

We obtain a value of 0.57 for K’ which is somewhat larger but not really 
inconsistent with earlier results such as those summarized in Pond et al. (1966), 
0.48 & 0.06, and those of Grant, Stewart & Moilliet (1962). Nasmyth (1970) re- 
examined the data used to obtain K in Grant et al. (1962) and noted some effects 
of scalar fluctuations on the velocity fluctuation measurements. By selecting 
data for which these effects were smallest he obtained a new value of 0.56. We 
have observed that in using the dissipation method for momentum flux a K’ of 
0.55 gives good agreement with the directly measured flux (Pond et al. 1971). 
Gibson, Stegen & Williams (1970) also suggest that the ‘usual’ value of 0.5 
should be increased somewhat, perhaps to about 0.6. We note also that although 
the turbulent fields we have measured are not exactly isotropic, they are 
apparently close enough to isotropy for the constant to be the same as for more 
isotropic cases. 

0.13. Hence 
we conclude that there is no difference between the value of the constant for 
temperature and humidity fluctuations. Based on our results, an overall value 
for Bk for y either T or q is 0.82 f 0.12. 

Not all the reported values for the scalar constant are directly comparable 
with our results because there are at  present two systems of defining this constant 
in common use. The system and notation that we have adopted is based on that 
of Monin & Yaglom (1967). The most common difference occurs because instead 

The value we obtain for l?: is 0.80 & 0.17; the value for B& is 0.83 
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of using Ny, the rate of dissipation of $7, the rate of dissipation of 3/2 = 2Ny 
[denoted by x by Gibson & Schwarz (1963), Gibson et al. (1970) and Grant et al. 
(1968) and by ey by Boston (1971)l is used in the definition of q57 (equation (3)). 
Thus the constant they report (denoted by or K k )  must be multiplied by 2 
for comparison. [It is also possible to use a non-radian wave-number as noted 
by Panofsky (1969). Further, a factor of 4 has sometimes been inserted in the 
right-hand side of (1). Thus it is necessary to check definitions very carefully 
before comparing results.] We believe we have reduced everyone’s results to a 
comparable system and will give comparisons in terms of BI. 

The value we have obtained for Bi (0.82 4 0.12) is consistent with the results 
of Wyngaard & Cot6 (1971)’ 0.79 +_ 0.10, obtained by measuring all the terms in 
the energy budget for $@. Gurvich & Zubkovski (1966) give values of 0.9 from 
structure functions and quote an earlier result of 0.7 for B&. Panofsky (1969) 
gives an estimate of 0.7. The value of 0.8 gives good agreement between directly 
measured moisture fluxes and those estimated by the dissipation method (Pond 
et aZ. 1971). Furthermore B; should be independent of the fluid. From measure- 
ments in the ocean Grant et al. (1968) obtain a value of 0.62 * 0.12 and Gibson & 
Schwarz (1963) obtain 0.70from measurements in a water tunnel. Thus one might 
conclude that the value of the scalar Kolmogoroff constant is reasonably well 
established. 

Unfortunately there are two other sets of measurements in the atmosphere 
which do not agree. These measurements by Gibson et al. (1970) and Boston 
(1971) are based on measurements of the whole spectrum q5T and measurement 
of NT by integration of k2q5,. One feels that this method, which is based on fewer 
assumptions than the others, ought to give the ‘best’ results. Gibson et al. (1970 
and personal communication) using a 0 . 6 ~  platinum wire obtain values from 
about 1.6 to 2.4 with an average value of 2.0 from measurements on Flip during 
BOMEX. Boston obtains 1.62 f 0.16 using a 0-25p wire. 

The reason for the differences between the Gibson and Boston results and 
the other results given previously is not clear at present. There are many pos- 
sibilities: the structure function and budget techniques are based on the spectrum 
a t  the large-scale limit of the approach to local isotropy, and the normalized 
spectra, while being similar, may have lower values than at smaller (but still 
- Q range) scales. The measurements in water are difficult because the spectra 
extend to very small scales and the measurements must be extended with 
Batchelor’s theory to obtain Ny by integration. Gibson’s and Boston’s results 
are based on much shorter averages than the structure function and budget 
results - the difference might be an effect of intermittency and of averaging 
length. Contamination of the very fine wires they use and neglect of the thermal 
lag of the thin laminar boundary layer around the wire could reduce their time 
constants leading to underestimates of NT and hence overestimates of B&. Grant 
et uZ. (1968), because the boundary-layer lag is dominant in water, measure the 
actual response of their sensor - such checks for the atmospheric results would 
be very helpful. The structure function measurements should be extended to 
smaller lags to see if the skewness values remain the same as for the region 
observed in this study. Clearly further work needs to be done before the value 
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of the scalar Kolmogoroff constant is definitely established. However, for 
estimating the dissipation from the large-scale end of the inertial-convective 
subrange (for budget studies or estimates of the scalar fluxes), it appears that 
a value of 0.8 for Bk can be used to obtain reasonable results. 
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